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Abstract
Background: Demographic changes and improvement in 
therapy have shifted the focus of treatment towards chronic 
diseases and multiple health conditions. This has caused a 
tremendous increase in data per patient that needs to be in-
tegrated longitudinally and across departmental silos. The 
general increase in the volume of data per diagnostic exam-
ination and the number of diagnostic procedures per diag-
nostic pathway additionally accentuate this data integration 
challenge. Summary: Subspecialization in medicine has led 
to largely autonomously organized departments with in
dependent IT ecosystems. This patchwork of IT infrastruc-
ture is not prepared to meet the data integration challenge. 
The resulting lack of integrated information makes the treat-
ment of chronically ill patients increasingly difficult and error 
prone. Key Message: A sustainable method for data ac
quisition is needed to aid multimodal treatment and im-
prove efficiency in healthcare. © 2019 S. Karger AG, Basel

Introduction

To understand the challenges of the hospitals’ infra-
structure today, it is helpful to look at its development. 
During the 19th century, physicians began to specialize 
and professionalize. This was necessary to protect them-

selves against unqualified competitors [1]. A central ele-
ment of professionalization is a high degree of autonomy 
and self-determination. The practice of medicine changed 
in the face of the technology-driven improvements in sur-
gery and patient care [2]. Physicians began to organize 
themselves according to organs, patient groups, thera-
peutic techniques, and national needs. Since their begin-
ning, these origins of modern professions have struggled 
to define their identity, values, sphere of activity, and role 
in patient care. To ensure that its members had shared 
experiences, values, solutions, and the language for pro-
fessional tools, the disciplines increasingly worked in si-
los [3, 4].

This has led to different levels of development in terms 
of digitalization between the disciplines and between hos-
pitals. Advances in science created a constant demand for 
restructuring of processes and new requirements for the 
department’s information technology (IT). As a result, 
the IT infrastructure evolved with almost the same degree 
of specialization as the departments. The resulting patch-
work is now a hospital’s administrative, cultural, and 
technical infrastructure. Despite the advantages of struc-
tured data entry, narrative text remained the preferred 
way of data acquisition in healthcare. This way of data 
acquisition and the customization of existing informa-
tion systems makes the access and usability of medical 
data tremendously complicated [5–8].

Rising Patient Complexity
The changing spectrum of diseases increasingly poses 

new challenges for the management of medical data. Im-
proved healthcare, socioeconomic conditions, and living 
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standards have led to an ageing society [9]. Improved 
treatment allows patients to survive with their diseases for 
prolonged periods of time and to acquire multiple condi-
tions [10, 11]. These multiple chronic conditions require 
continuous interdisciplinary management like never be-
fore in medical history [10, 12]. Specialized departments 
provide precise diagnostics with large amounts of data for 
the patient’s multiple conditions. Since this information 
is obtained in largely encapsulated IT ecosystems, a com-
prehensive view of the patient’s increasingly complex 
condition becomes a rising problem [5, 13]. Missing stan-
dards in data acquisition and management prevent the 
efficient use of data and lead to most decisions being 
based on expert consensus [14, 15]. The lack of coordina-
tion of patient care, information deficits, overtreatment, 
and the increasing complexity of administration have led 
to an enormous increase in health expenditure and will 
continue unless we improve information management 
[16, 17].

Good data management is a prerequisite for knowl-
edge discovery and subsequent data and knowledge inte-
gration to improve patient care. The difficulty to gain the 
required high-quality medical knowledge for evidence-
based treatment depends on the ability of high-quality 
data [18]. Rational data acquisition and management is a 
key challenge to ensure the quality of the treatment, a 
streamlined workflow, and a sustainable way of financing 
the healthcare system [19]. Integrative solutions for data 
acquisition are needed to adapt information to these dif-
ferent requirements and purposes. Providers of health in-
formation technology are confronted with completely 
new challenges. Instead of protecting their products, 
open systems and standards are required to support in-
formation exchange.

The Hospitals’ IT Patchwork

After decades of professionalization and specializa-
tion, departments customized their processes according 
to their needs. Cultural, administrative, and technologi-
cal barriers have emerged that have induced complex and 
inefficient workflows. Clinical oncology is a dynamic, 
multidisciplinary healthcare specialty with complex deci-
sion-making and care coordination needs [20] and, as 
such, a good example for a discipline that faces the afore-
mentioned challenges. This field clearly reveals the impli-
cations of the hospitals’ insufficient infrastructure.

To understand these complicated processes, we ana-
lyzed our diagnostic workflow with an external consult-

ing group (Fig. 1). The aim of this analysis was to over-
come the functional silos, strengthen teamwork, and im-
prove diagnostic pathway. Using the diagnostic workup 
in prostate cancer as an example, we analyzed the pro-
cesses of our diagnostic departments from the first re-
quest in radiology to the pathologically confirmed diag-
nosis. The individual steps in this diagnostic process were 
examined for gaps, actors involved, standard procedures, 
deliverables, resources, and duration. Involved in the 
analysis were two radiologists, two pathologists, one urol-
ogist, the VC of research, a technical assistant, as well as 
two consultants. Starting from the radiological request, 
we identified 16 individual triggered steps in the entire 
workflow to the final diagnosis. These numerous steps 
have evolved through changing demands and require 
manual intervention. A lack of standardization, e.g. for 
image requests, requires manual information transfer to 
the radiological information system. Missing informa-
tion in this request prevents efficient scheduling of radio-
logical examinations and may require manual requests of 
further information from the referring physician. The ne-
cessity of these manual interventions affects the entire di-
agnostic pathway and can cause various errors. In our 
analysis we identified 28 independent gaps. Most of these 
gaps concern our information management. The use of 
multiple, siloed information systems which poorly ex-
change information causes an information deficit at vari-
ous points. The resulting lack of integrated information 
leads to fragmented patient data and prevents a compre-
hensive view of the patient’s general condition. As a re-
sult, seven actors with numerous, uncoordinated, and un-
documented contacts are involved in the diagnostic pro-
cess to obtain a comprehensive view on patient’s data for 
a valid diagnosis. Since the result of this manual effort is 
not documented digitally, it needs to be repeated for every 
single examination.

This situation is aggravated through an environment 
of constantly changing teams and high time pressure, 
common to a teaching hospital setting. Repeated exami-
nations and postponements of patients to the next multi-
disciplinary teams (MDT) conference are the result.

Through this analysis we were able to understand the 
key problems in our workflow. The expanding scale and 
complexity of healthcare challenges efficient workflow 
and communication. Department-internal organization 
of processes and the patchwork IT infrastructure prevent 
a linear workflow in which steps are systematically initi-
ated. Instead, the patient’s information is fragmented into 
several isolated IT ecosystems that disrupt information 
exchange and comprehensive evaluation. This is a crucial 
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limitation as the evaluation of medical information high-
ly depends on its context [21]. It is a tremendous effort to 
keep track of the patient’s status, the reason for each in-
vestigation and the patient’s medical history. Repetitive 
and uncoordinated interactions between the stakehold-
ers, that disrupt department-specific workflows, are the 
consequence.

Restriction of Current Solutions
To ensure sufficient management for complex patient 

cases despite these obstacles, MDT have been initiated, 
more reactionary than evolutionary [10, 22, 23]. In MDT 
conferences, highly specialized professionals meet to pro-
vide their expertise for the best possible care. During 
these conferences, all available information will be merged 
to get a comprehensive view of the patient’s status and to 
discuss treatment options. However, MDT conferences 
do not address the underlying problem of inadequate IT 
infrastructure. The workflow remains inefficient with all 
the aforementioned limitations and does not ensure com-
pleteness of information. The evaluation of patient infor-

mation continues to require repeated effort for all in-
volved. Since the conference usually takes place at a fixed 
time during the week, it highly depends on the complete-
ness of the information and the availability of specialists 
at a certain time point with little or no flexibility. The 
hospitals’ shift system cannot ensure this requirement, 
which means that important decisions may be postponed 
to the next conference [24–26].

Vendors in health technology have recognized the ris-
ing need for support of MDT conferences [27]. Clinical 
decision support (CDS) systems are designed to directly 
support clinical decision-makers by using multi-source 
information to provide patient-centered assessments or 
guidance [28, 29]. There is growing evidence that onco-
logical and nononcological CDS systems appear to be well 
accepted and may support the diagnostic process, risk as-
sessment, care plan, and treatment [30–35]. However, the 
implementation of CDS systems entails enormous tech-
nical, organizational, and cultural challenges [15]. The 
patchwork of IT systems customized to different needs in 
each hospital prevents the accessibility and usability of 

Fig. 1. Workflow analysis. The workflow analysis shows the diag-
nostic pathway of a patient to his final diagnosis. Color-coded, the 
respective, largely independent departments. Each department 
uses its own information system with its own individual standards 
for data acquisition and storage. Patient information is fragmented 

among these information systems. Due to their difficult accessibil-
ity and the lack of uniform data standards, these systems are named 
as silos. The resulting gaps in the workflow in the respective de-
partments are shown as key points. The arrows indicate the neces-
sary steps during the diagnostic process.
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the data required for the CDS system. Pure digitization 
has led to an enormous volume of data, but there is a sub-
stantial gap between information volume- and informa-
tion value increase. Even if the data is accessible, it is nec-
essary to distinguish between digital data and actionable 
information. The evaluation of medical data is highly 
complex and depends on various factors. The interpreta-
tion of simplest parameters such as body temperature has 
different meanings, depending on where, when, and how 
it is measured [36]. Electronic health records (EHR) are 
currently the most compressed extracts from these com-
plex and heterogeneous medical data. EHRs are used for 
data exchange, but even within the same hospital they are 
fragmented at best. There are no common standards for 
the structuring of EHR and the way it is stored is not com-
patible with most applications and technologies [37]. On 
the contrary, many EHRs are little more than organized 
PDF repositories lacking a strong, data element-oriented 
content. On this basis, the implementation opportunities 
and scalability of CDS systems are challenging.

The most important challenge in obtaining actionable 
information from existing data is how to structure it. 
Deep learning methods such as natural language process-
ing (NLP) are used to gain valuable information from 

electronic health records [38]. This computational ap-
proach tries to extract data elements from the report and 
to transfer them into a machine-readable format [6]. De-
spite successful application in this field, this approach fac-
es several limitations [39]. The gain in valuable informa-
tion depends on the quality of the underlying reports [18, 
40]. Since every examination is independently evaluated, 
a high intellectual effort is required to provide the intend-
ed context. The customization of the EHR system in each 
department causes the data in one hospital to look differ-
ent than the data of a similar patient receiving similar 
treatment in another hospital [5–8]. The resulting differ-
ences in relation, meaning, and purpose make it tremen-
dously difficult to evaluate the data in its intended context 
and gain valuable information from it [41, 42].

The Need for Sustainable Data Management
A more sustainable method of data acquisition is a 

central requirement to meet the rapid changes in health-
care needs. This sustainable method primarily requires a 
cultural change. Departments must no longer define their 
processes and standards as independent as before. Stan-
dards need to be defined on the highest level to enable 
cooperation within and across hospitals. The most im-

Fig. 2. Prostate cancer workup using data elements. The left picture 
shows the prostate to be examined in blue with a tumor in red. In 
the course of the screening, examinations are carried out to deter-
mine the tumor identity, stage, and location. All information from 
these examinations is entered using our forms (forms surrounding 
the prostate; blue, urology; yellow, radiology; red, pathology). The 

data elements collected during this diagnostic pathway are merged 
in our database to form a virtual image of the examined prostate 
(pixelated prostate on the right). The data elements of this virtual 
image of the prostate can be regrouped according to the purpose 
or the recipient (data clouds on the right).
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portant part of these standardizations concerns the way 
of data acquisition. These standards need to ensure the 
acquisition of high-quality and functionally usable data 
to streamline processes, improve teamwork, and provide 
valuable information for the best possible treatment deci-
sions. Given the complexity of health data and the enor-
mous amount of patient information, the definition of 
data elements and their relation should be implemented 
at the stage of its acquisition. This is a central paradigm 
to ensure that data is available in various formats for mul-
tiple purposes and usable in a variety of information sys-
tems [19].

A promising approach is the use of synoptic reporting 
[43]. Instead of writing highly variable, narrative reports, 
a standardized form is filled out and the collected data 
elements are used to create an entire report. This way of 
documentation is suitable for different purposes like 
medical history, radiological and histological examina-

tions and has already shown that the reports are more ac-
curate, clearer, and more coherent than narrative reports 
[44]. The usage of this data element-oriented way of data 
acquisition ensures for the first time that patients’ data is 
not only available, but usable. If this approach is applied 
to all examinations necessary in the context of a specific 
disease, information could be integrated during the diag-
nostic pathway instead of being fragmented into multiple 
information systems. Thus, an integrated view from mul-
tiple perspectives would be possible (Fig. 2). To obtain 
valuable information from data elements, they need to be 
linked along the patient’s pathway and comprehensively 
integrate the full diagnostic and therapeutic process. 
However, the segmentation of findings and diagnoses 
into their features varies from previously known data 
such as body temperature or blood pressure.

Using data elements for data acquisition, the descrip-
tion of a certain finding, for instance in an MRI of the 

Fig.  3. Data elements providing multiple 
outputs. By visualizing the most important 
risk factors and the Quality of Life Index, 
lucid charts can be created to support the 
decision-making process (top). Synoptic 
reporting is used to combine data elements 
with text modules to create an explanatory 
text. This method allows us to use text 
modules that are adapted to the recipient. 
In this way a traditional report for the spe-
cialist, a summarizing report for the gen-
eral practitioner, and a comprehensible re-
port for the patient can be created at the 
same time.
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prostate, is divided into its describing features. A suspi-
cious lesion would be divided into several elements like 
localization, diameter, shape, relation to the surrounding 
anatomic structures, signal behavior, etc. Related param-
eters, such as the Gleason score, that are collected along 
the diagnostic pathway need to be assigned to this certain 
finding. That would allow to combine all available ele-
ments and to create a digital twin of the examined object 
(e.g., prostate). To avoid erroneous mapping of data ele-
ments, a database design is required that is able to group 
data elements according to their relationship in the in-
tended context.

The use of data elements and predefined relationships 
ensure the reuse of information for various purposes. The 
information can be reassembled in different variants ac-
cording to the requirements of the respective recipient. 
The use of synoptic reports will allow the use of tradi-
tional reports for information exchange between highly 
specialized professionals. Detailed, but conclusively sum-
marized joint reports can be created for general practitio-
ners. Instead of text modules that are appropriate for 
health professional, text modules that correspond to the 
patient’s level of knowledge could be used for a patient 
report. Tumor boards require a well-structured prepara-
tion of relevant information for an efficient decision-
making process. Data elements can be used to visualize 
relevant information such as risk factors and the general 
condition of the patient in lucid diagrams for targeted 
support (Fig. 3).

The implementation of standardized data acquisition 
based on data elements pave the way for a uniform data 
flow to streamline processes across departments. Pre-
defined thresholds in an examination could trigger auto-
matically subsequent steps (e.g., additional examinations, 
discussions between actors). Thresholds in following ex-
aminations would trigger further investigations until the 
information for the treatment decision is complete. In-
stead of initiating each step manually, the generated data 
elements would trigger a process that will continue until 
the final diagnosis is made and guide the patient through 
his or her hospital journey. The patient’s data stream 
would help to understand why which step was initiated, 
what the patient’s current status is and what the next steps 
would be. The availability of data elements instead of rig-
id reports allows to continuously evaluate each examina-
tion and the complete diagnostic pathway. If patients are 
divided into the wrong risk groups or if an alternative 
pathway shows better performance, the processes could 
be adapted accordingly. Thus, decisions and processes 
could be made on a data-driven basis.

Conclusion

Existing structures in the hospital are facing new chal-
lenges caused by demographic transition and increasing 
complexity of data acquisition and treatment decisions. 
The strict division into departments with their respective 
IT ecosystems is not a suitable strategy to provide efficient 
interdisciplinary management. It requires a cultural 
change in which previously autarkic governed depart-
ments adhere to general standards in order to achieve a 
higher goal. The way in which data is collected needs to 
change fundamentally in order to adapt to changing 
healthcare needs. Data can no longer be acquired in the 
form of a rigid, dedicated report, which prohibits the re-
usability for various needs and purposes. An appropriate 
infrastructure is required to ensure efficient data manage-
ment using data elements. These are fundamental re-
quirements for a sustainable healthcare system that is able 
to adapt to the rapid changing demands of society and the 
environment.
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